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AbstracL For a system in a well with a moving boundary we show that the s syscem 
memorizes the history of motion of the boundary through a non-integrable phase factor, 
Bey’s  phase. We first treat the case that the transformed Hamiltonian has a constant 
frequency. Secondly, in the case of lime-dependent frequency we discuss non-adiabatic 
and non-cyclic cases. 

1. Introduction 

When a boundary of a system is moving, does the state of the system memorize the 
history of its motion? The answer is yes. In this paper, we will justify this by use of 
the non-integrable (history-dependent) property of Berry’s phase [l]. 

There had been a prejudice such that a phase factor in a wavefunction which 
is a solution of the time-dependent Schrodinger equation can always be removed 

However, Berry [l] firstly clarified that there is a phase which cannot be removed by 
any reparametrization of the phase of the instantaneous eigenstate of the Hamiltonian 
whenever the evolution of the parameters for the Hamiltonian is cyclic. He used 
the adiabatic approximation in his discussions. Berry’s phase has given a unique 
basic physics to a number of phenomena appearing in diverse fields in physics [2]. 
Wilczek and Zee [3], Aharonov and Anandan [4] and Samuel and Bhandari [SI have 
generalized the theory of Berry’s phase to degenerate, non-adiabatic and non-cyclic 
cases respectively. It was also found by Hannay and Berry [6] that there is a classical 
limit of Berry’s phase which is called Hannay’s angle. 

We consider the onedimensional Schrodinger equation in artesian coordinates. 
The solution is limited to the inner part of a potential well, constituting two infinite 
walls. The left boundary is chosen as the origin of position while the right boundary is 
allowed to undergo an arbitraly time-dependent shift. At any instant T ,  the position 
of the right boundary is L X ( + / T )  where L and T are unit length and unit time, 
and 8 is an arbitrary dimensionless function. Assuming 8(0) = 1, L represents the 
position of the moving wall at the origin of time. We also assume the constant value 
of the potential inside the well and choose it as the origin of energies. Under these 
assumptions the wavefunction must satisfy 

by 1 r.par2met!btia!! af the ph1se Wi!h no Ch2n-e 6- in the physics nf the system. 

(1) 
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Since we are interested in evolution problems we must add the initial condition d( T = 
0 , z )  = &(z). Let us define a new rescaled space coordinate q = z / X ( T / T ) ,  a 
new time variable 1 = s,’ d u / R Z ( a / T ) ,  and a new wavefunction 

where q ( t , q )  = q ( r , z ) ,  X ( t / T )  = X ( T / T )  and the dot denotd differentiation 
with respect to t / T .  Then the new wavefunction satisfies [7] 

with 

R 2 ( t / T )  = [ X / X  - 2(X/X)2] /Tz  = x3X”/T2 (4) 

where the prime denotes differentiation with respect to T / T .  The new 
initial condition associated with the problem is &(q)  = $(t = 0,q)  = 
&(q )  exp[-iq2X(0)/2hT]. Whether the frequency given in (4) is time-dependent 
or time-independent depends on the motion of the right boundary, i.e. the function 
form of X ( T / T ) .  

2. Constant frequency case 

Suppose that the right boundaly is moving such that 

X ( r / T )  = [ l + ( a / T ) ~ ] ’ / ’ .  (5 )  

Then the new rescaled coordinate q, the new time variable t and the frequency R2 
are given as the following: q = z[1 + (~/T)T]’ / ’ ,  t = (T /a ) In [ l  t ( a / T ) r ]  and 
C i 2  = - ( U / ~ T ) ~ .  Thus our original problem with a moving boundaly reduces to that 
of the time-independent harmonic oscillator. In order to obtain Berry’s phase in this 
problem we resort to the Gaussian wavepacket approximation. 

The Schradinger equation is equivalent to 6 1  = 0 where the action is given 
by 1 = J[($lih&l$) - ($IAI$)]dt. In order to take the Gaussian wavepacket 
approximation we consider the family of normalized coherent states 

.,~,- 1, ~ ,-*,-n!4 <I 11- ,7/.,,2 I :m, . \  ,7,A,, / 1 \ 1  I + >  

where n is the dimension of q, y is the phase, Q and P specify a point in an  
ordinary 2n-dimensional classical phase space. Thus there are 2n + 1 parameters 
G = ( y , Q , P ) .  Parameters which give the true solution of the time-dependent 
Schradinger equation satisfy the following equations: Q, = a H ( Q , P ) / a P , ,  -pi = 
a H ( Q , P ) / a Q ,  and 9 = P .  Q - H ( Q , P )  where H ( Q , P )  is the classical 
Hamiltonian. Now we renormalize the energy into zero thus the Berry connection 
A( t) is given by 

(6j W q , l )  = 1””) ‘ Z A p l i - z l Y  - W1L)I t l r l L J ‘  ( q  - Y I L l l  + i i l L l l / r l f  

~ ( t )  = ($(t)l ia/atl$(i))  = 4 - P .  Q .  (7) 
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Then, as is expected 111, the Berry connection A(1) is zero along the actual evolution 
curve in the energy renormalized Hilbert space. Thus the Berry phase arises from 
the line integral of the Berry connection along a geodesic connecting two end points 
of the actual evolution curve. This is called the geodesic rule [SI. However, for a 
cyclic evolution the projection of the actual evolution curve into the projective Hilbert 
space is a closed one, so there is no contribution from the projection of the geodesic. 
Now we can define a vector $(q, 1 )  in the projective Hilbert space such that 

& q , t )  = (Wn’4exp{[- f lq-  Q(t)lZ + i P ( t ) .  (n - Q(t))l /f i) .  (8) 

Since there is one-to-one correspondence between the state $ ( q ; t )  and 2n 
parameters G = ( Q , P ) ,  the time derivative a/at can be replaced by V b .  G. 
Then the Berry connection A ( t )  in the projective Hilbert space is given by [SI 

A( t )=  (li.liv,I~).O+(~livpl$).p=p.Q. (9) 

Note that A ( t )  is identically zero but & t )  is not always zero. By use of the Gaussian 
wavepacket approximation we can easily see that the Aharonov-Bohm phase and the 
Collela, Overhauser and Werner (cow) phase are examples of Berry’s phase 191. 

The classical Hamiltonian for the simple harmonic oscillator with RZ = -(a/ZT)’ 
is given by 

H(Q, P )  = f P 2  - fa/ZT)’QZ (10) 

where Q and P are parameters for the Gaussian wavepacket. The parameters Q 
and P satisfying the following equations: Q ( t )  = a H ( Q , P ) / a P  = P(1) and 
P(1) = .aH(Q, P ) / a Q  = (a /2T)ZQ(1)  and boundary conditions Q(0) = 0 and 
P(0)  = Q(0) = U can be written such that 

2T , a -usinh ( - ( 1  - ZnT,)) 2nTb < t < (2n + l)Tb a 2T 

( G ~ , ) s i n h ( $ ( t - ( 2 n +  1)Tb)) (11) 
a 

- (2n + 1)Tb)) (2n + 1)Tb < 1 < 2(n + 1)Tb 

vcosh ( Q ( t  - 2nTb)) 2nTb < t 6 (271 + l)Tb 2T 
a 

p ( t )  = - ~ c o s h ( ~ T ~ ) c o s h ( - ( t - ( 2 n +  2T 2T l )Tb))  (12) 
aL , a 

+-sslnh ( E ( t  - (2n t l )Tb))  ( 2 n  t l)Tb < t < 2(n t l)Tb 1 2T 

where n = 0,1,2,  , . . and Tb is the time at which the wavepacket first bounces off 
the right wall, i.e. Q(Tb) = L .  Although the wavefunction is confined to a potential 
well with infinite walls the form of Gaussian wavepacket we choose has non-vanishing 
quantum tails to infinity. We have used a naive approximation which is correct only at 
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the classical level. The Berry phase that the state will attain after N-times round-trips, 
yN, is obtained as 

= 2Nv2  [$ + 

The solution of the original problem given in (l), j( T ,  z) can be obtained from the 
Gaussian wavepacket solution + ( t ,  q )  by use of (2) 

where Q ( t )  = Q ( T )  and P ( t )  = P(T). If T >> 6, the last term in the exponent 
in (14) vanishes and therefore G( T ,  z) iS also a normalized Gaussian wavepacket. 

3. Time-dependent frequency case 

For the generalized harmonic oscillator, the Hamiltonian is given by i X ( t ) q 2  + 
2Y(t )qp+ Z(t)p2) .  If X ( t ) ,  Y ( t )  and Z ( t )  are slowlyvarying parameters?i.e. the 
evolution is adiabatic, then the Berry connection for an energy eigenstate, A,,( t ) ,  is 
given by - i ( n  + i ( 2 Y  - Y Z ) / ( Z m )  [6] .  Hence the Berry connection 
for the system described by (3) vanishes if the evolution of the system is adiabatic 
since Y ( t )  = 0. Thus we must treat a non-adiabatic case (41 in order to show the 
appearance of Berry's phase in a time-dependent harmonic oscillator probiem. 

For the non-adiabatic case, we may find the geometric phase by use of 
an instantaneous eigenstate In(t)) Of the Lewis invariant f(t) [lo] such as 
J:(n(t)lia/atln(t)) dt. In the adiabatic approximation, there is one-to-one 
correspondence between the set of parameters { h , ( t ) )  and the instantaneous 
eigenstates of the Hamiltonian fi(t).  Similarly, in general, there is one-to-one 
correspondence between the set of generalized parameters {a i ( t ) }  (not { h i ( t ) } )  
[ll] and the instantaneous eigenstates of the invariant f(t). Hence the operator 
a/a t  may be replaced by the form V, . (da /d t )  and consequently we obtain an 
analogous solid-angle law or an area law for the geometric phase y,,(C) in the 
non-adiabatic case 1111 

where a ( t )  denotes { a i ( t ) } .  
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For the time-dependent harmonic oscillator described by (3), the Hamiltonian 
&(t )  is given by f p 2  + f R 2 ( t ) q 2 .  Then the invariant f ( t )  is given by 

where p( t) satisfies the following non-autonomous nonlinear differential equation 
i j  + @ ( t ) p  - ( l / p3 )  = 0. We assume that the state of the system is initially in 
an eigenstate of the Hamiltonian A(0). In other words, we set f(0) = f i ( O ) ,  
i.e. p(0) = 1/m and p(0)  = 0. Let us set X ( t )  = ( l /p4)  + ( p z / p 2 ) ,  
Y ( t )  = - ( p / p )  and Z ( t )  = 1; then the Berry connection in the projective Hilbert 
space is written such that 

1 
= - - (n  + f ) ( p f i -  6’) (17) 

1 iY - Y Z  
2 Z ( X Z - Y 2 ) ’ I Z  2 

A,(t) = --(n + 1) 

where X (  t ) ,  Y (  t )  and Z( t )  are parameters in the generalized parameter space. Note 
that we must choose special quantum numbers n satisfying n( t ,O)  = n ( t , L )  = 0, 
i.e. $(t ,  0) = $ ( t ,  L )  = 0, which are the houndaly conditions given in (3). 

As a specific exampie, we consider a case in which the right boundary is osciiiating 
with frequency w and amplitude cosh(a/w), i.e. 8 ( r )  is given by 

X (  r )  = 

where n = 0,1,2,. . . . Then the new time variable t is given by 

(18) 
cosh[a( T - 2 n / w ) ]  2 n / w  < r < ( 2 n  + l ) / w  

( 2 n  + l ) /w  < r < 2 ( n  + l ) / w  { cosh[a(2(n + l ) / w  - r ) ]  

( 2 n l a )  tanh(a/w) + ( I / a )  tanh[a(r - 2 n / w ) ]  

( 2 ( n +  l)/a)tanh(a/w)+(l/a)tanh[a(2(n+ l ) / w - ~ ) ]  (19) 
2 n / w  < T < ( 2 n  + l ) / w  

(271 + l ) / w  < T 6 2 ( n  + l ) / w  

t =  { 
and the frequency Qz is given by 

a’ cosh4{tanh-’[at - 2n tanh(a/w)]) 

a icosh4j tanh-’ i~(n+ i j t a n h ( a / w j  - a t j j  
(20) 

( 2 n  + l ) / w  < T < 2 ( n  + l ) / w .  

2 n / w  < T < ( 2 n  + l ) / w  
n2(t) = 1 

I 
For our setting, 8 ( 0 )  = 1. The fact that x’(0) = 0 guarantees the invariance of the 
initial condition, i.e. & ( q )  = &(q )  = &(z). If we solve the nonlinear equation 
p + R 2 ( t ) p  - (I/$) = 0 with the f r 2 n c y  n Z ( t )  given in (20) and the initial 
conditions p(0)  = 0 and p ( 0 )  = l / d Q ( O )  by use of a numerical method, we can 
see that the trajectoly in the p - p  plane is an open curve, in general. In other words, 
there is no time T at which I (  T) = f(0). Thus the evolution is non-cyclic. We will 
discuss non-cyclic cases as the next step for showing the appearance of Berry’s phase 
for a the-dependent harmonic oscillator. 
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4. Noneyclic rases 

If we denote lb,(d)) as a solution of the time-dependent Schrtidinger equation 
(if ia/at  - &(t) ) l+ , ( t ) )  = 0 with the boundary condition I+,(O)) = In(0)) where 
In(0)) is an instantaneous eigenstate of &(O), then I$,(T)) is given by [lo] 

. T  
I+,(T)) = In(T))exp [I’ i (n ( t ) l i a / a t ln ( t ) )d t -  1 (n( t ) l f i ( i ) ln( t ) )dt]  (21) 

where In(t)) is the instantaneous eigenstate of the Lewis invariant f(t) which satisfies 
f(0) = &(O). If we renormalize the energy so as to be zero at every time then the 
evolution of the state can be regarded as a series of dense measuremen@, which may 
be written as 

where c = T / N  and & ( t )  I (n(t)liO/Otln(t)). Note that if one changes 

is independent to the phase arbitrariness of In(t)) for 0 < t < T [5].  If 
In(T)) # In(0)) then the evolution is called a non-cyclic one. We will discuss 
that, for a non-cyclic evolution, there are two ways to  measure Berry’s phase. 

The projective Hilbert space is one which is spanned by the instantaneous 
eigenstates {ln(t))] of the invariant f(t). Let IR) be a state in the projective Hilbert 
space which is not equal to the initial state In(0)) (see figure 1). Let us obtain the 
phase difference between IR) and I+,,(T)). In order to do this we consider the inner 
product of these two states 

In(t)) - exp[ix(t)lln(t)) then I+,(T)) - exp[ix(0)1I6,(T)), that is, I+,(T)) 

where B is a geodesic connecting IR) and In(T)) (see figure 1) and p, E 

J , .&( t )d t .  We applied the geodesic rule [SI in the calculation of (R(n(T)) .  Thus 
the phase difference p p  between IR) and I+,(T)) is given by pp = si.+, L a d s  
where E is the projection of the actual evolution curve E, which is shown in figure 
1. Note that under the local phase reparametrization, the phase @ is transformed 
such that p? + [x(O) - x ( R ) ]  + p,”, that is, p,” is independent of the phase 
arbitrariness along the curve E + 3 except at the end point of the curve. Now we 
consider another evolution curve E’ and its projection I?’ (corresponding to another 
Hamiltonian), in which E’ has the same end points as those of E (see figure 1). Then 
the phase difference Or’ between IR) and l+,,(T))’ is giyen by Pf’ = si.,,, A, ds. 
Under the local phase reparametrization, the phase p,” is transformed such that 
pp’ - [ ~ ( o )  - x (  R)] + pp’. Then the difference of the phases pp and 0:’ 
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is invariant under the local phase reparametrization, and is therefore an observable. 
Note that the difference of the phases, pp' - pp is irrelevant to the reference state 
IR). An experiment has been carried out in order to measure this phase pf by tracing 
the neutron spin on its passage through a magnetic field in the 2-$ plane at various 
frequencies [12]. For the time-dependent harmonic oscillator, the phase p,,, for the 
quantum state In(t)) is given by 

Of,, = -- 2 1 ( n +  f)j!T(pp-P2)dt 

by use of A, (t)  which is given in (17). 

Figure 1. Schematic diagram of the Hilbefi space. M denotes the projective Hilben 
space. G, g, g' and g are geodesic E and E' are actual evolution cuwes for 
WO different Hamiltonians and E and E' are projections of E and E' into v. 
observable $E-E, A. d8 is given by the shaded area. Since E + G as well as E + G 
is closed, the phase A, d s  is also an obsewable. 

Let us consider the case where the reference state IR) is equal to In(0)). Then 
between In(0)) and I4,(T)) is given by the phase difference 

where G is a geodesic connecting In(0)) and In(T)) as in figure 1. The closure of the 
curve E +  guarantees the invariance of p," under the local phase reparametrization 
along the curve. Therefore the phase 0," itself is an observable and we may observe 
the absolute value of p," [SI. An experiment to observe the phase p," by measuring the 
rotation of the plane of polarization of a linearly polarized beam travelling along a 
uniformly wound half-turn single-mode optical fibre is described in [13]. In order 
to obtain the phase for an eigenstate In(t)) of the invariant f(f) for the 
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time-dependent harmonic oscillator problem we need to obtain geodesics for this 
problem. The invariant f(2) in (16) can be written as f(t) = c;’=, R’(t)T, where 
R1 = 1 - l i p 4  - pzJp2, R2 = -2pJp and R3 = 1 + l /p4 + p21p2, and TI (= 
a(q2 - p 2 ) ) ,  T2(= $ ( p q +  qp)) and T3 (= $ ( q 2  + p ’ ) )  are generators of the group 
SO(2,l) with commutation relations [T,, 7;] = ieij,,Tk(gij = diag(-1, -1,l)). It 
can be easily shown that ( R 3 ) 2  - ( R 2 ) z  - = 4(XZ - Y 2 )  = A2. Since 
Berry’s phase is indifferent to the magnitude of A and R3 > 0, we choose the 
upper sheet of the unit hyperboloid corresponding to the group S0(2,1)/S0(2) 
as the generalized parameter space [14]. The vector R can be parametrized as 
R = (cosBsinhp,sinBsinhp,coshp) ( O <  0 < 2a,0 < P < CO). Then the genelal 
geodesic equation is given by 

From the values (p(O),p(O)) and ( p ( T ) , p ( T ) ) ,  coordinates (O1,pl) and (ez, p2) 
which represent the starting and end points of the evolution curve in the unit 
hyperboloid are easily obtained. Then we may determine E and D by solving two 
equations 0, = f(&, E) + D and BZ = f (&,  E) + D, i.e. we may find the geodesic 
connecting two end points of the evolution curve. Then the phase for the 
quantum state In(t)) is given by 

Ecoshp [i’ ir s i n h p 4 s G d p ]  ’ 

1 
2 A,ds = - - (n+ 1) ( p p - p * ) d t -  

(28) 

5. Discussions 

We have shown that Berry’s phase appears in the state of a particle moving under 
a constant potential in a well with a moving wall. Motivations for our problem are 
as follows: one is academic and the others are somewhat physical. An academic 
motivation is that our problem is an example in which the non-adiabatic geometric 
phase plays a crucial role. Since the Hamiltonian for our problem in the transformed 
space and time, which is given by (3), is that for a time-dependent harmonic oscillator, 
Berry’s phase does not appear if the evolution is adiabatic. Only when the evolution 
is non-adiabatic can the geometric phase have a non-trivial value. In addition, the 
system never comes back to the starting state in general. Thus our problem is an 
example of the non-adiabatic and noncyclic geometric phase. A physical motivation 
for our problem is that we explicitly show that the state of the system memorizes 
the history of motion of the boundary through a non-integrable (historydependent) 
phase factor, Berry’s phase. Another physical motivation to study the time-dependent 
harmonic oscillator type Hamiltonian in (3) is that for the problem of squeezed-light 
generation a resonator containing some medium with a time-dependent dielectric 
permeability function is usually considered and, in the one-dimensional case, the 
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vector-potential of the electromagnetic field satisfies the equation of an oscillator 
with a time-dependent frequency [15]. Other relevant physical problems which are 
associated with the one-dimensional time-dependent harmonic oscillators are listed 
in the textbook [16]. 

Now we discuss why the exhibited Berry's phases are non-trivial. In the case 
of the Gaussian wavepacket approximation, the parameters for the projective Hilbert 
suam are Q and P (see f9)). For the constant frequency. any trajectory in Q-P space 
must be cyclic since the Hamiltonian is a time-independent one-dimensional harmonic 
oscillator. Thus Berry's phase appearing in our problem is non-trivial. When we use 
the Lewis invariant method, there exist two ways to observe Berry's phases appearing 
in non-cyclic evolutions. The phases in (24) and (26) are the observable phases, which 
are invariant under the local phase reparametrization, and they have been observed 
experimentally [S, 121. 
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